
Hierarchical Hybrid Search Structure for High
Performance Packet Classification

Og̃uzhan Erdem
Electrical and Electronics Engineering

Middle East Technical University

Ankara, TURKEY 06510

Email: ogerdem@metu.edu.tr

Hoang Le, Viktor K. Prasanna
Ming Hsieh Department of Electrical Engineering

University of Southern California

Los Angeles, USA 90007

Email: {hoangle, prasanna}@usc.edu

Abstract—Hierarchical search structures for packet classifica-
tion offer good memory performance and support quick rule
updates when implemented on multi-core network processors.
However, pipelined hardware implementation of these algorithms
has two disadvantages: (1) backtracking which requires stalling
the pipeline and (2) inefficient memory usage due to variation in
the size of the trie nodes.

We propose a clustering algorithm that can partition a given
rule database into a fixed number of clusters to eliminate back-
tracking in the state-of-the-art hierarchical search structures.
Furthermore, we develop a novel ternary trie data structure
(Tε). In Tε structure, the size of the trie nodes is fixed by
utilizing ε-branch property, which overcomes the memory in-
efficiency problems in the pipelined hardware implementation of
hierarchical search structures. We design a two-stage hierarchical
search structure consisting of binary search trees in Stage 1,
and Tε structures in Stage 2. Our approach demonstrates a
substantial reduction in the memory footprint compared with that
of the state-of-the-art. For all publicly available databases, the
achieved memory efficiency is between 10.37 and 22.81 bytes
of memory per rule. State-of-the-art designs can only achieve the
memory efficiency of over 23 byte/rule in the best case. We also
propose a SRAM-based linear pipelined architecture for packet
classification that achieves high throughput. Using a state-of-the-
art FPGA, the proposed design can sustain a 418 million packets
per second throughput or 134 Gbps (for the minimum packet
size of 40 Bytes). Additionally, our design maintains packet input
order and supports in-place non-blocking rule updates.

I. INTRODUCTION

With the rapid growth of the Internet, the design of high

speed packet forwarding engines has been a major challenge.

Advances in optical networking technology are pushing link

rates beyond OC-768 (40 Gbps). Such high rates demand

that packet processing in routers must be performed in hard-

ware [6].

Most hardware-based solutions for high speed packet clas-

sification fall into two main categories: ternary content ad-

dressable memory (TCAM)-based and dynamic/static random

access memory (DRAM/SRAM)-based solutions. Although

TCAM-based engines can retrieve search results in just one

clock cycle, their throughput is limited by the relatively low

speed of TCAMs. They are expensive and offer little adaptabil-

ity to new addressing and routing protocols [1]. Since SRAM-

Supported by the U.S. National Science Foundation under grant No. CCF-
1018801. Equipment grant from Xilinx is gratefully acknowledged.

based solutions utilize some kind of tree traversal, multiple

cycles are required to process a single packet. Therefore,

pipelining techniques have been employed to improve the

throughput. As a result, the new incoming packet does not

need to wait for the previous one to finish its whole search

process. The key issues in designing an architecture for IP

packet header classification are (1) size of supported ruleset,

(2) high throughput, (3) scalability, and (4) incremental up-

date. To address these challenges, we propose and implement

a high-throughput and memory-efficient SRAM-based linear

pipelined architecture for packet classification. This paper

makes the following contributions:

• A clustering algorithm that partitions a given rule

database into a fixed number of sets to eliminate back-

tracking in the state-of-the-art hierarchical search struc-

tures (Section IV-B).

• A special type of ternary trie data structure (Tε) and

a two-stage hierarchical search structure that achieve

substantial memory saving in hardware implementation

(Section IV-C).

• A linear multi-pipelined SRAM-based architecture using

the proposed hierarchical search structure that can be

easily implemented on hardware (Section VI). Our design

achieves a memory efficiency between 10.37 and 22.81
bytes of memory per rule, and sustains a high throughput

of 418 million packets per second on a state-of-the-art

FPGA device (Section VII).

The rest of the paper is organized as follows. Section II

covers the background and related work. Section III presents

the definitions and notations used in the paper. Section IV

details the proposed data structures and clustering algorithm.

Section V describes the design methodology and optimiza-

tions. Section VI introduces the proposed architecture and

presents implementation results. Section VIII concludes the

paper.

II. BACKGROUND

A. Packet classification overview
Packet classification is an essential part of a full-featured

network router. It enables the router to support firewall pro-

cessing, Quality of Service (QoS) differentiation, virtual pri-

vate networks, policy routing, and other value-added services.

2012 Proceedings IEEE INFOCOM

978-1-4673-0775-8/12/$31.00 ©2012 IEEE 1898

An IP packet can be classified based on 5-tuple header rules

(i.e. Source IP Address, Destination IP Address, Protocol,

Source Port, and Destination Port), in which fields are gener-

ally specified by prefixes and ranges. When a packet arrives

at a router, its header is compared against a set of rules, often

known as a ruleset or filter database. Each rule can have one or

more fields and an associated action to be taken if matched. A

packet is considered matching a rule only if it matches all the

fields within that rule. In a network router, the matching result

guides the forwarding decision. In a network firewall, packets

are dropped (silently discard) or rejected (discard with “error

responses” sent to the sources) when a match is detected. A

sample ruleset is shown in Table I. The terms ruleset and filter
database are used interchangeably in this paper.

TABLE I: Sample 5-field ruleset

Rule SA DA SP DP PRTCL Priority Action

R1 0* 10* 80 * TCP 1 Act0

R2 0* 01* 17 17 UDP 2 Act1

R3 0* 1* 44 * TCP 2 Act2

R4 00* 1* 17 44 UDP 3 Act3

R5 00* 11* * 100 TCP 4 Act4

R6 10* 1* * * * 5 Act5

R7 * 00* * * TCP 5 Act6

R8 0* 10* * 100 TCP 6 Act7

R9 0* 1* * * TCP 7 Act8

R10 0* 10* 17 17 UDP 7 Act9

R11 111* 000* 80 * TCP 8 Act10

B. Prior work

Existing packet classification approaches can be classified

into four main groups: (1) exhaustive search, (2) decomposi-

tion, (3) decision tree, and (4) hierarchical-trie (H-trie).

In exhaustive search, all the entries in a ruleset are ana-

lyzed [18], [20]. The two basic approaches in this group are

linear search and TCAM based parallel search. Linear search

is performed by comparing the header of a packet with all

the entries in a ruleset sequentially. Since linear search is

a slow process for large rulesets, it is popular for the final

stage of a search when the set of possible matching rules has

been reduced to a bounded constant [2], [5]. In TCAM-based

approach, the header of a packet is compared with all the

entries in parallel. TCAMs has several disadvantages such as

high cost, storage inefficiency, high power consumption, and

limited scalability to long input keys.

In decomposition based solutions, independent searches on

each header field are performed, then the results are com-

bined [4], [11], [3], [19], [23]. These approaches offer high

throughput but require high amount of storage space in order to

aggregate the results of single searches efficiently. The primary

challenge for these approaches is how to efficiently aggregate

the results of the single field searches.

Most of the proposed packet header classification algo-

rithms and architectures are based on decision trees, which

take the geometric view of the packet classification problem.

HiCuts [5] and its enhanced version HyperCuts [16] are rep-

resentatives of such algorithms. At each node of the decision

tree, the search space is cut based on the information from

one or more fields in the rule. HiCuts builds a decision tree

using local optimization decisions at each node to choose the

next dimension to test, and how many cuts to make in the

chosen dimension. The HyperCuts algorithm allows cutting

on multiple fields per step, resulting in a fatter and shorter

decision tree. The common problem of these approaches is

that it is difficult to support incremental updates.

Hierarchical-trie (H-trie) is built using the source address

(SA) and destination address (DA) prefixes. Initially, a SA

trie is constructed using all the SA prefixes. For each prefix

node in SA trie, a DA trie is constructed using DA prefix(es)

associated with that SA prefix. Thus, the structure consists of a

large SA trie and hierarchically connected multiple small DA

tries. Search starts from the SA trie. If a prefix node of the SA

trie is visited, then the corresponding DA trie connected to that

prefix node is traversed. Even though a match can be found at

any node in the DA trie, search has to backtrack to the SA trie

and continue the search to find other possible matches. The

search terminates after a leaf node in the SA trie is visited.

Set-pruning trie eliminates the backtracking by replicating

the rules [22]. Grid-of-tries (GoT) [19] data structure for

2-field packet classification eliminates the backtracking by

introducing switch pointers to some trie nodes and hence each

rule is stored in only one node. Despite of good memory

efficiency, it is not clear how to extend the GoT to support

multiple fields.

The authors in [2] presented the Extended Grid-of-tries

(EGT) to improve the previous idea by supporting multiple

fields without using many instances of the data structure. The

authors replaced the switch pointers with jump pointers. All

matching filters are traversed during the search. A node in an

EGT has a pointer to the list of rules. Whenever a matching

node is reached, a linear search is performed in the final rule

list. Although EGT has good memory performance, high num-

ber of worst-case memory accesses decreases the search time

performance. These designs suffer from backtracking, which

makes hardware implementation difficult and inefficient.

III. DEFINITIONS AND NOTATIONS

Definition Prefix node in a trie is any node to which a path

from the root of the trie corresponds to a SA or DA prefix

of a rule. Other nodes are called non-prefix node. If a prefix

node is a leaf node then it is called leaf prefix node, otherwise

non-leaf prefix node.

Definition Two prefixes x, y are said to be disjoint if x is not

a proper prefix of y and y is not a proper prefix of x. A set

of prefixes in which all the prefixes are pairwise disjoint is

called a disjoint prefix set.

Definition Two rules are said to be overlapped if they have

the same SA and DA prefixes. For instance, R1, R8 and R10

in Table I are overlapped. A node that stores overlapped rules

is called supernode.

1899

Definition Memory efficiency is defined as the average

amount of memory (in bytes) required to store a filter rule.

Table II shows the list of notations used throughout the

paper.

TABLE II: List of notations used in the paper

Notation Meaning

SA Source IP address

DA Destination IP address

SP Source port number

DP Destination port number

PRTCL Protocol name

S Set of SA prefixes

N Number of prefixes in S

R Number of clusters

Si Set of SA prefixes in cluster i, 0 ≤ i < R

Ptrie Upper bound for the number of rules per trie node

SV Skip value used in path compression

BS Bit string used to store missing bits in path compression

εb Upper bound for the number of consecutive ε transitions

α Ratio of the number of rules in secondary memory

αT Upper bound for α

IV. DATA STRUCTURE AND ALGORITHMS

A. Motivation

While hierarchical trie structures can be efficiently deployed

on multi-core network processors, their hardware implemen-

tations have two issues: (1) backtracking and (2) memory

inefficiency.

As previously mentioned, in Hierarchical-trie (H-trie), each

prefix node of SA trie is hierarchically connected to a desti-

nation address prefix trie (DA trie) in the second stage. An

H-trie is composed of a large SA trie and multiple small DA

tries. If there is a match at a prefix node X in the SA trie then

the corresponding DA trie is traversed. Note that search in the

SA trie is paused during this time. Once completed the DA

trie, search has to backtrack to the prefix node X in the SA

trie to find other possible matches. All matches must be found,

and the match with a highest priority is returned. In hardware

implementations, backtracking requires stalling the pipeline

and feedback loops to return the intermediate results from

each DA trie search. Figure 1 illustrates the backtracking while

searching a 5-tuple IP packet header (SA = 000, DA = 110,

SP = 44, DP = 100, PRTCL = TCP) in a H-trie structure

constructed using the rules in Table I. Although the packet

header initially matches R5, search needs to backtrack to the

SA trie to find the highest priority match. In the figure, the

red lines show the backtracking paths. Consequently, R9 is

selected as the highest priority match among all the matches

(R5, R3 and R9).

Hardware implementation of an H-trie structure also suffers

from the memory inefficiency. This is due to the variable

number of rules stored in each node. Analysis of the available

rulesets shows that the number of rules stored in a trie node

varies from 0 to 73 [21]. In hardware implementation, the size

0

0 0

1

1

1

1

1

0 1

1 0

0

0

1 0

0

0

17 44 UDP R4

* 100 TCP R5

17 17 UDP R2 80 * TCP R1

44 * TCP R3

* 100 TCP R8

17 17 UDP R10

* * TCP R9

* * TCP R7

* * * R6

80 * TCP R11

000 110 44 100 TCP

SA Trie

DA Tries

Fig. 1: Backtracking in H-trie structure

of a node is determined by that of the largest node, leading

to inefficient memory and resource usage. For instance, the

hardware implementation of the H-trie shown in Figure 1

requires a memory space for 17 × 3 rules (the largest node

has 3 rules and DA tries includes 17 nodes). However, only

21.5% (11 rules) of the total space is used.

In this paper, we propose a clustering algorithm, named

recursive leaf extraction. The algorithm eliminates the back-

tracking from DA tries to the SA trie in the hierarchical

structure, while generating a fixed number of clusters. Fur-

thermore, we propose a 2-stage memory-efficient hierarchical

data structure that can easily be implemented in hardware.

The proposed architecture is called Tree − Trieε (TTε)

hierarchical search architecture.

B. Recursive Leaf Exraction (RLE) for Fixed-Set Rule Clus-
tering

The recursive leaf extraction algorithm partitions a given

ruleset based on the SA field to eliminate backtracking from

a DA structure to the SA structure. The algorithm takes a set

of prefixes S and the number of clusters R as its inputs, and

generates a collection of non-empty subsets {Si}, (0 ≤ i <
R). Each subset is called a cluster. In each cluster, the SA

prefixes are pairwise disjoint.

Initially, RLE algorithm builds a uni-bit trie using the

SA prefixes. Then, the recursive leaf extraction process is

performed. Each recursive Step i of the algorithm includes

two sub-steps: (1) the leaf nodes are removed from the trie

and moved into set {Si} and (2) the non-prefix leaf nodes are

trimmed off the trie.

In the RLE algorithm, input R is the number leaf extrac-

tion steps, and it also specifies the number of clusters. Our

algorithm repeats the leaf extraction process R − 1 times. In

the last step, leaf pushing is applied to the remaining trie. The

pseudo-code is given in Algorithm 1.

Figure 2 demonstrates the recursive leaf extraction process

using the SA prefixes from Table I. In our example, R is

chosen as 3. In the last step of the algorithm, only the default

prefix (P=*) remained; hence, leaf pushing is not required.

Time Complexity: In the first step of the algorithm, a binary

trie is built from a given prefix set S consisting of N prefixes.

1900

Algorithm 1 Clustering algorithm

Input: Prefix set S, Number of clusters R.

Output: A partition of S into a collection of non-empty prefix

subsets such that within each subset all the prefixes are

pairwise disjoint

1: i = 0
2: Construct a binary trie using prefix set S.

3: while i < R− 1 do
4: Move the leaves of the trie into Si

5: Trim the leaf-removed trie

6: i = i+ 1
7: end while
8: Leaf-push the trie and move the leaf-pushed leaves into

Si

9: return {Si}, 0 ≤ i < R

00

1

1

111*

10*00*

0*

*

S0

0

0*

*S1

*

S2

(a) (b) (c)

1

0

Fig. 2: Recursive leaf extraction using SA prefixes from Table I

The complexity of this step is O(N). In each step of the

algorithm, the leaf prefixes are moved into Set Si, and the

remaining trie is trimmed. This step is executed R− 1 times.

The complexity of each step is O(N). In the final step, the

trimmed trie is leaf-pushed and the leaves are moved into Set

SR−1. Since all the steps are sequential and R is an input

constant, the overall complexity of recursive leaf extraction

algorithm is O(N).

C. Tree− Trieε (TTε) Search Structure

We propose a hierarchical search structure which consists

of 2 stages:

Stage 1 (SA tree): A binary search tree (BST) is built

for each cluster using the SA prefixes. In the BST, each

node includes: (1) a value (prefix), (2) a prefix length, (3)

left pointer, and (4) right pointer. The left subtree of a node

contains only values that are less than or equal to the value

stored in that node. The right subtree contains values that are

greater than the value. Prior to constructing the BST, prefixes

are sorted into an array in ascending order. Given the sorted

array of prefixes, the BST is constructed by picking the correct

prefix (pivot) as root, and recursively building the left and

right subtrees. Note that short prefixes are extended to the

length of the longest prefix by appending with ‘0’ bits. In

our structure, the prefixes in any cluster are pairwise disjoint;

hence, extending the prefixes to a same length should not cause

overlapping.

Figure 3 illustrates a TTε data structure for the given set

of rules in Table I. In this example, R = 3. Algorithm 1

111

1

1

1 0

0

0

17 44 UDP R4

* 100 TCP R5

* * * R6

80 * TCP R11

0

0 1

1

0
17 17 UDP R2

80 * TCP R1

44 * TCP R3

0

0

* * TCP R7* * TCP R9

* 100 TCP R8

17 17 UDP R10

000

100 *

ε

ε

ε

Stage 1

Stage 2

Fig. 3: TTε data structure for the ruleset in Table I

partitions the SA prefixes into 3 sets (or clusters). For each

set Si, a binary search tree is constructed in the first stage

of hierarchical data structure. To further improve memory

efficiency, each set has its own maximum prefix length,

depending on the length of the longest prefix in the set. In

our example, the lengths in each cluster are chosen as 3,1 and

0 for Set S0, S1 and S2, respectively. The shorter prefixes are

extended by appending with 0s.

Stage 2 (DA trie): Each node of the SA trees connects to

a DA trie. Therefore, in each cluster, the number of DA tries

equals to the number of SA prefixes. Each prefix node of a

DA trie stores at least one rule. For each rule, only the SP,

DP, PRTCL, and Priority fields are stored.

In our approach, the overlapped rules are stored in the

DA trie nodes rather than pointing to a list of these rules

as in [2]. Therefore, the matching results can be resolved at

each node. However, the number of rules stored at each node is

not constant. This results in memory inefficiency for hardware

implementation. To improve memory efficiency, we propose a

special type of ternary trie data structure, called Tε.

1) Tε Trie Structure: A single node in Tε may have (1) a

single epsilon (ε) branch for which no input bit is consumed or

(2) ‘0’ and/or ‘1’ branch (same as binary trie), but can not have

(1) and (2) at the same time. The main goal of utilizing the ε
transition is to split a supernode in a trie into multiple small

and fixed size nodes. These nodes are sequentially connected

by the ε branches.

In the Tε data structure, we set a limit on the number of

overlapped rules per node, denoted by Ptrie. If the number of

overlapped rules in a supernode is M , then this supernode can

be represented by �M/Ptrie� nodes. Each node contains Ptrie

rules, except for the last node. In Figure 3, Stage 2 illustrates

the Tε trie structures generated using the DA prefixes of the

rules in Table I. In our example, Ptrie = 1. Thus, a supernode,

which has overlapped rules R1, R8 and R10, is represented by

three nodes connected by the ε transitions. The pseudo-code

to construct Tε is given in Algorithm 2.

2) Path Compression (PC) Algorithm: Our Tε data structure

can also be used with path compression technique [13]. Each

non-prefix node of a trie can be removed if it has only one

child. Path compression helps shorten the path to a prefix node

from the root. In order to keep the record of the removed

internal nodes, each node must store a skip value (SV) and a

1901

Algorithm 2 Tε construction algorithm

Input: Prefix table T consisting of prefixes {Pi}, 0 ≤ i < N
with associated nexthop info NHIi

Input: Root node Proot of Tε, Proot.left = NULL,

Proot.right = NULL, Proot.size = 0
Input: Maximum node size, Ptrie

Output: Tε trie structure

1: i = 0
2: while i ≤ N do
3: Binary trie insert (Pi, Proot)

4: Let Pnode be a node where Pi is stored

5: if Pnode.size < Ptrie then
6: Store NHIi to Pnode, Pnode.size = Pnode.size+ 1
7: else
8: if Pnode has ε branch (Pnode.left = ε branch,

Pnode.right = 0) then
9: Pnode = Pnode.left

10: Go to Step 5.

11: else
12: Create a node Pnew

13: Pnew.left = Pnode.left
14: Pnew.right = Pnode.right
15: Pnode.left = Pnew

16: Pnode.right = 0
17: Store NHIi to Pnew, Pnew.size = Pnew.size+1
18: end if
19: end if
20: i = i+ 1
21: end while
22: return Tε trie

bit string (BS). The skip value stores the number of bits to be

skipped on the path. The bit string stores the missing bits from

the last skip operation. The memory efficiency performance

of the algorithm highly depends on the trie structure. The

performance increases when the trie is sparse. Otherwise the

algorithm may not save memory because of the overhead,

which comes from the book-keeping of the removed internal

nodes. Figure 4 illustrates the path compressed TTε data

structure for the rule set shown in Table I.

111

0

0 1

0

80 * TCP R1

44 * TCP R3

* * TCP R9

* 100 TCP R8

17 17 UDP R10

000

100 *

ε

ε

ε

17 44 UDP R4

* 100 TCP R5

SV=1
BS=1

* * * R6

SV=1
BS=1

80 * TCP R11

SV=3
BS=000

17 17 UDP R2

SV=1
BS=1

* * TCP R7

SV=2
BS=00

SV: skip value BS: bit string

Fig. 4: Path-compressed TTε data structure for the ruleset in

Table I

D. Packet Classification Algorithm

For each incoming packet, all the 5 fields (SA, DA,

PRTCL, SP , DP) are extracted from the header and for-

warded to all the clusters. A traversing frame includes seven

fields: (1) source address (SA), (2) destination address (DA),

(3) source port (SP), (4) destination port (DP), (5) protocol

id (PRTCL), (6) the latest matched rule Flow ID (RID), and

(7) the latest matched rule priority number (Rpri). Search is

performed in all the clusters in parallel, and is carried out as

follows:

SA tree search: Search in SA tree starts from the root node

and is simply performed by traversing left or right, depending

on the comparison at each node. Search ends when the source

address matches with the value in a node, or when a leaf

node is reached. If a match is found in any node, then search

continues to traverse the corresponding Tε structure in the next

stage, otherwise it is terminated without a match.

DA trie search (Path compressed Tε structure): Search

uses the destination IP address to traverse the DA trie, similarly

to that in a traditional binary trie. However when a node with

an ε branch is reached, no address bit is inspected and the

search passes directly to the next node. A node in Tε has two

pointer fields (left and right child pointers) as in the binary trie;

however, in case of the ε branch, only one of pointer fields

is used and the other can be filled by all ‘0’ bits. If a node

has no ε branch, then the direction of traversal is determined

by the most significant bit of destination address (left if 0 or

right otherwise). In each node, the source port number SP, the

destination port number DP and the protocol PRTCL of the

packet header are compared with the corresponding fields of

the rules stored in that node, in parallel. If a match occurs

and the priority value of the matched rule is higher than that

of the last match (Rpri), then the corresponding action (RID)

and priority (Rpri) fields of a traversing frame are updated.

If path compression is employed, then the skip value (SV)

and the bit string (BS) in each trie node are also examined.

The destination address is left-shifted accordingly by SV + 1
bits. Search operation in the Tε structure terminates when a

leaf node or a null pointer is reached.

The search results from all the clusters are compared based

on their priority value. The matching rule with the highest

priority is returned as the final result.

Claim: Backtracking is not needed in the search using the

proposed TTε data structure.

Proof: The proposed clustering algorithm ensures that all

the SA prefixes within any cluster are disjoint. Thus, at most

one match is possible in each SA tree. Therefore, once the

search leaves Stage 1 (SA tree) for Stage 2 (DA tries), it does

not have to jump back to the SA tree.

E. Rule Updates

Rule updates include (1) rule insertion, (2) rule deletion,

and (3) action ID changes. To simplify updating operations,

a shadow SA trie is maintained. This shadow trie is used to

find the correct cluster on which the update operation will be

performed and thus rebuilding the full trie is not necessary.

1902

Each update operation requires modifications in SA tree and

DA tries separately. Prefix insertion and deletion in a binary

search tree are covered in detail in [12]; hence, these details are

skipped in this paper. We only focus on the update operations

in the DA tries (Tε structure).

Rule insertion: The rule insertion requires a prefix insertion

into the SA tree and DA tries. The complexity of update

operations in a binary trie, is O(W), where W is the maximum

length of a prefix (32 for IPv4 and 64 for IPv6). However, the

prefix insertion in a Tε structure needs to check the size of

the prefix node before placing. As described in Algorithm 2,

if a node, in which the new rule will be stored, has more than

Ptrie rules, then the rule is inserted into the next node which

is connected by an ε branch. If such a node does not exist, a

new node with ε transition is created. Even though generation

of such a node in TTε is easy in multicore implementations, it

requires shifting of trie levels in a pipelined implementation.

Once the correct prefix node is located, the associated DP, SP,

PRTCL, Priority and the Action ID of a new rule are finally

stored in this node.

Rule deletion: In rule deletion, the target SA and DA

prefixes are located and their valid bits are reset. However,

the prefix deletion in Tε structure may also lead to shifting

of prefixes, which is a performance bottleneck in pipelined

hardware implementations.

Action ID change: The target rule is located and its Action

ID is simply updated.

V. DESIGN METHODOLOGY AND OPTIMIZATIONS

A. Design Methodology

The TTε data structure for packet classification can easily

be implemented in hardware. Our analysis using the publicly

available real rulesets shows that the number of pipeline stages

(SA tree + DA trie) in the TTε architecture is at most 55
(Section VII). However, the size of a single supernode may

increase due to rule updates. If the size of a supernode exceeds

the threshold Ptrie, then new trie node(s) with ε transition(s)

must be inserted to the trie data structure. This also leads to

increase in the number of pipeline stages of the architecture.

Any changes in the hardware configuration while searches

are running may decrease the performance of the architecture

substantially. To solve this problem, we propose two methods:

1) A limit on the number of consecutive ε transitions (εb)

is set while the number of overlapped rules allowed per

node (Ptrie) is relaxed. If M is the number of overlapped

rules in a supernode, then this supernode can be repre-

sented by at most (εb+1) nodes, which are sequentially

connected using ε transitions. In this case, any supernode

is allowed to store at most �M/(εb + 1)� ≥ Ptrie rules.

This approach sets an upper bound for the number of

stages in a pipeline in return for increase in the memory

requirement since Ptrie is relaxed for some stages.

2) To use the available memory space efficiently and fix the

number of stages, the two parameters Ptrie and εb can be

used together. However, in this case a secondary search

structure is required to store the rules which exceed the

predefined limit. In hardware implementation, SRAM

is used to store the large primary data structure and

the small secondary structure can be implemented using

TCAM. If M denotes the number of overlapped rules in

a supernode, then this supernode can be represented by

at most (εb + 1) nodes. Each node can contain at most

Ptrie rules. In this case, if M > (Ptrie × (εb +1)) then

the number of excessive rules, M − (Ptrie × (εb + 1)),
will be moved to the secondary storage.

Several design problems can be formulated to choose the

design parameters Ptrie and εb based on the given SRAM and

secondary memory (TCAM) sizes. The best SRAM memory

efficiency can be achieved by choosing the smallest values for

these parameters. However, in this case, the largest amount of

secondary memory is required. Let α denote the ratio of the

number of rules stored in the secondary storage over the total

number of rules of the given ruleset S. The following design

strategies are possible:

1) Given a limit for the number of consecutive ε transitions

εb and an αT ≥ 0 as the input threshold, choose Ptrie

such that α ≤ αT . Let Ptrie max be the maximum num-

ber of rules that can be stored at each node over the en-

tire structure. First, Ptrie max can easily be determined

by building the TTε for the given ruleset with α = 0,

and finding the maximum number of rules per node over

the entire TTε. If the number of rules in the largest node

is Mmax, then Ptrie max = �Mmax/(εb+1)�. Secondly,

we independently vary Ptrie from 1 to Ptrie max. For

each (Ptrie, εb) pair, a TTε is generated, and the

resulting memory efficiency and α are calculated. A

design such that α ≤ αT is selected. In the case that

more than one design satisfies the constraint, the design

with the highest memory efficiency (or lowest memory

requirement) is chosen.

2) Alternatively, εb can be optimized such that α ≤ αT for

a given Ptrie and an αT ≥ 0 as the input threshold.

Let εb max be the maximum number of consecutive ε
transitions that are allowed in our structure. First, εb max

can easily be determined by building the TTε for the

given ruleset with α = 0. Then, we vary εb from 1
to εb max. Similar to above design approach, for each

(Ptrie, εb) pair, a TTε is generated and the resulting

memory efficiency and α are calculated. The α ≤ αT

providing the highest memory efficiency is selected.

3) Ptrie and εb can also be optimized together to minimize

the size of the secondary memory for a given SRAM size

MSRAM . First, Ptrie max and εb max can be determined

for α = 0. Secondly, we decrease these parameters and

calculate the required SRAM size for each (Ptrie, εb)

pair. When MSRAM is reached, then the α which

guarantees the smallest size of the secondary memory

for the given SRAM size is returned.

We utilized design strategy 2 in this paper while describing

the architecture and implementation. In our design, we set

1903

αT = 0 and optimize εb for given Ptrie values. By setting

αT = 0, we aimed to find the smallest εb value which

guarantees no secondary storage required.

B. Optimization in clustering algorithm

Our clustering algorithm partitions a given prefixes into

a collection of non-empty clusters {Si}, 0 ≤ i < R (Sec-

tion IV-B). In each cluster, the prefixes are pairwise disjoint.

Our clustering algorithm can further be extended to reduce

the negative effect of some large sized supernodes over the

performance. The algorithm can be relaxed to allow some

prefixes to be resided in multiple clusters as long as the rule of

pairwise disjoint prefix set is not violated. As seen in Figure 2,

the prefixes 10* and 111* in S0 can also be replicated in

S1. By doing so, the prefixes in each cluster will still remain

pairwise disjoint. By using this extension, some large sized

supernodes can be represented by smaller sized supernodes in

multiple clusters.

VI. ARCHITECTURE AND IMPLEMENTATION

A. Architecture

Figure 5 describes the overall architecture of the proposed

TTε engine for packet classification. Pipelining is used to

improve the throughput. SA and DA denote pipelines for

the source address prefix trees and destination address prefix

tries, respectively. The number of pipelines depends on the

number of clusters. The number of stages in each pipeline

is determined by the height of the data structure used. Delay

blocks are added at the end of the shorter path to match the

latency of the pipelines.

Action ID

SA
Tree

DA
Tries

SA
Tree

DA
Tries

SA
Tree

DA
Tries

0 1 R-1

Priority Resolver

Header extracter

Incoming packet

Fig. 5: Multi-pipeline TTε architecture

The header fields of packet is extracted from the incoming

packet. These values are then routed to all pipelines and

searches are performed in parallel. The results are fed through

a priority resolver to select the highest priority match.

B. Implementation

The architecture is configured as dual linear pipelines to

double the search rate. At each stage, the memory has dual

Read/Write ports so that two packets can be input every clock

cycle.

Figure 6 presents a single pipeline stage for a DA trie with

Ptrie = 1. Each stage includes a match module and a rule

table stored on SRAM. There are seven inputs: (1) destination

address (DA), (2) destination port number (DP), (3) source

port number (SP), (4) protocol number (PRTCL), (5) action

ID of latest matched rule, (6) priority value of latest matched

rule and (7) the memory address, which is used to retrieve

the node stored in SRAM. The memory address is forwarded

from the previous stage.

Each entry in SRAM consists of 11 data fields: (1) destina-

tion port number higher range value (DPhigh), (2) destination

port number lower range value (DPlow), (3) source port

number higher range value (SPhigh), (4) source port number

lower range value (SPlow), (5) protocol number (prtcl), (6)

priority value of rule, (7) action ID associated with the rule,

(8) left child node address, (9) right child node address, (10)

skip value used for path compression, and (11) bit string to

keep the record of removed nodes while path compression. If

any stage is optimized for Ptrie > 1, then a SRAM entry in

that stage includes total of Ptrie × 11 data fields.

SRAM

Address Data SPhigh

DPhigh
DPlow

SPlow

Prtcl

SP
DP

PRTCL

Address

Priority

DA

Address
Action ID

Match
Module

Action ID
Priority

Register

SP
DP

PRTCL

Address

DA
Action ID
Priority

Skip value
Bit String

Fig. 6: A basic stage of the DA pipeline

At each stage, the DA bits are used to determine the

direction of traversal. Then, the memory address is updated

and the DA is left-shifted (by SV +1 times if path compression

is employed). If ε transition is encountered, then search is

forwarded to the next stage without checking and shifting DA
bits. If there is a match in any stage and the priority value

of the current rule is higher than the priority value of the last

matched rule, then the action ID and priority value are updated

by the match module.

VII. PERFORMANCE EVALUATION

A. Experimental Setup

Fifteen real rulesets were collected from class-bench [21].

There are three different types of rule sets: Access Control

List (ACL), Firewall (FW), and IP Chain (IPC). Each group

has 5 filter sets with different sizes. The size of the sets range

from 100 to 10K rules.

B. Memory requirement

We first applied our proposed fixed-set clustering algorithm

to each rule set. Our algorithm takes the SA prefixes of

1904

TABLE III: Memory efficiency (Bytes per rule) for various rulesets

1 2 3 4 5 6 7 8 9 10 11

Ruleset N S0 S1 S2 S3 TTε EGT [2] HyperCuts [16] BV [11] Hybrid scheme [9]

ACL 752 679 16 55 2 22.08 25.41 32.58 71.80 N/A

ACL100 98 85 3 10 0 21.42 27.69 27.78 47.35 24.44

ACL1K 916 798 28 85 5 22.20 24.96 38.15 91.63 22.98

ACL5K 4415 3927 279 201 8 21.44 24.87 59.64 257.23 24.83

ACL10K 9603 8416 496 684 7 22.62 30.23 54.22 789.22 25.51

FW 269 93 6 1 169 10.48 25.31 399.18 40.72 N/A

FW100 92 28 2 2 60 10.37 23.42 113.37 27.46 56.63

FW1K 791 268 23 12 488 10.41 23.80 6110.58 67.08 215.06

FW5K 4653 1554 264 34 2801 13.27 39.04 16132.65 691.69 255.13

FW10K 9311 3611 28 0 5672 14.51 49.45 12554.18 1582.18 248.54

IPC 1550 1207 201 13 129 21.64 26.63 128.52 61.57 N/A

IPC100 99 65 18 3 13 18.34 31.60 24.57 69.16 23.65

IPC1K 938 730 101 47 60 20.05 29.95 61.34 176.03 25.63

IPC5K 4460 3763 218 147 332 21.56 27.62 406.80 358.61 49.46

IPC10K 9037 7659 491 331 556 22.81 28.92 2378.35 788.69 43.30

0

10

20

30

40

50

60

70

1 2 3 4 5

M
em

or
y

(B
yt

e/
fil

te
r)

Ptrie

Acl_real
Acl_100
Acl_1K
Acl_5K
Acl_10K
Fw_real
Fw_100
Fw_1K
Fw_5K
Fw_10K
Ipc_real
Ipc_100
Ipc_1K
Ipc_5K
Ipc_10K

Fig. 7: Memory requirement for various Ptrie values

rules and the parameter R as inputs, and partitions the input

ruleset into R clusters. We observed that leaf pushing is not

required for any ruleset for R = 4, because set S3 includes

only default source address prefixes (SA=*) in the last step

of our algorithm. Table III presents the numerical results of

our clustering algorithm for the given 15 rulesets. The second

column gives the total number of rules in each set. Columns

3-6 shows the resulting sets and the number of rules in each

set.

Ptrie provides the tradeoff between the memory requirement

of TTε and the number of pipeline stages. If Ptrie increases,

then the memory requirement increases. However, the number

of required pipeline stages decreases. On the other hand, small

value of Ptrie provides better memory efficiency for TTε,

while increasing the number of stages. Figure 7 and 8 show

the memory requirement (bytes per filter) and the number of

pipeline stages for each ruleset [21] with various values of

Ptrie, respectively. Note that the number of pipeline stages

observed in our experiments guarantees no TCAM is required

(αT = 0).

In Table III, Column 7 shows the memory requirement for

0

10

20

30

40

50

60

1 2 3 4 5

N
um

be
r o

f p
ip

el
in

e
st

ag
es

Ptrie

Acl_real
Acl_100
Acl_1K
Acl_5K
Acl_10K
Fw_real
Fw_100
Fw_1K
Fw_5K
Fw_10K
Ipc_real
Ipc_100
Ipc_1K
Ipc_5K
Ipc_10K

Fig. 8: The number of pipeline stages for various Ptrie values

each rule set as Ptrie = 1. Columns 8-11 show the results of

the existing approaches for the same rulesets. All results are

presented in the number of bytes per rule.

C. Throughput

We implemented our proposed hardware design in Verilog,

using Xilinx ISE 12.4, with Xilinx Virtex-5 XC5VFX200T

(−2 speed grade) as the target. The architecture supports

the largest ruleset ACL10K consisting of 9603 rules. The

post place and route results show a minimum clock rate of

4.785 ns, or a maximum frequency of 209 MHz. Using dual-

ported memory, the design can support 418 million packets

per second (MPPS), or 134 Gbps. Throughout this paper,

throughput in Gbps is calculated based on a minimum packet

size of 40 bytes (or 320 bits).

D. Performance Comparison

In Table IV, the performance of TTε is compared with

the state-of-the-art packet classification approaches in terms

of the memory efficiency (byte/rule), throughput (Gbps), and

throughput efficiency (Gbps/byte) (the ratio of the throughput

to the memory efficiency). The results for the existing designs

1905

TABLE IV: Performance comparison

1 2 3 4 5 6

Packet classification engines Platform # of rules Memory efficiency (Bytes/rule) Throughput (Gbps) Throughput efficiency (Gbps/B)

TTε FPGA 9603 22.62 134.0 5.92

Hybrid scheme [9] FPGA 9603 25.51 80.00 3.14

Optimized HyperCuts [8] FPGA 9603 63.73 80.23 1.26

Simplified HyperCuts [10] FPGA 10000 28.60 10.84 0.38

BV-TCAM [17] FPGA 222 72.07 10.00 0.14

2sBFCE [14] FPGA 4000 44.50 2.06 0.05

Memory-based DCFL [7] FPGA 128 1726.56 24.00 0.01

B2PC [15] ASIC 3300 163.63 13.60 0.08

were reported in [9]. Note that all the designs have been

implemented on a Xilinx Virtex-5 device for fair comparisons.

Columns 7-11 in Table III show that, our scheme exhibits

the superior memory efficiency, compared with the existing

approaches for the same rulesets. Furthermore, the variation of

the memory efficiency in TTε is smaller than that of the other

solutions. Hence, the memory efficiency of the proposed TTε

is less sensitive to the size and type of the supported rulesets.

Table IV gives the throughput and throughput efficiency of

the state-of-the-art hardware-based packet classification en-

gines. Column 5 shows that our design achieves the highest

throughput performance among all the existing architectures.

Our scheme also outperforms all the existing schemes with

respect to the throughput efficiency, as shown in Column 6.

VIII. CONCLUSION

In this paper, we proposed Hierarchical TTε structure

for packet classification. Our approach eliminates the need

for backtracking in hardware implementation and achieves

substantial memory saving. Furthermore, we designed and

implemented a high-throughput, linear pipelined architecture

to support the proposed data structure on FPGAs. The num-

ber of memory accesses is fixed in contrast to the existing

approaches. Using a state-of-the-art Field Programmable Gate

Arrays (FPGA), the proposed architecture achieves a sus-

tained throughput of 418 million lookups per second. One of

the drawbacks of the design is the potentially long latency

for rulesets with large number of overlapped rules. Another

drawback is the memory efficiency of the design can be

negatively affected by new rule updates. In this case, the design

parameters need to be recalculated to improve the memory

efficiency. In the future, we plan to explore the variable node

size and other optimization techniques to further improve

the memory efficiency. We also plan to reduce the power

consumption and extend the data structure to support packet

classification with more number of fields, such as OpenFlow.

REFERENCES

[1] F. Baboescu, S. Rajgopal, L. Huang, and N. Richardson. Hardware
implementation of a tree based IP lookup algorithm for oc-768 and
beyond. In Proc. DesignCon ’05, 2005.

[2] F. Baboescu, S. Singh, and G. Varghese. Packet classification for core
routers: Is there an alternative to cams. In In IEEE INFOCOM, 2003.

[3] F. Baboescu and G. Varghese. Scalable packet classification. IEEE/ACM
Trans. Netw., 13:2–14, February 2005.

[4] P. Gupta and N. McKeown. Packet classification on multiple fields.
SIGCOMM Comput. Commun. Rev., 29:147–160, August 1999.

[5] P. Gupta and N. Mckeown. Packet classification using hierarchical
intelligent cuttings. In in Hot Interconnects VII, pages 34–41, 1999.

[6] P. Gupta and N. McKeown. Algorithms for packet classification.
Network, IEEE, 15(2):24 –32, April 2001.

[7] G. S. Jedhe, A. Ramamoorthy, and K. Varghese. A scalable high
throughput firewall in fpga. In Proceedings FCCM, pages 43–52,
Washington, DC, USA, 2008. IEEE Computer Society.

[8] W. Jiang and V. K. Prasanna. Large-scale wire-speed packet classifi-
cation on fpgas. In Proceedings of the FPGA 2009, FPGA ’09, pages
219–228, New York, NY, USA, 2009. ACM.

[9] W. Jiang and V. K. Prasanna. Scalable packet classification: Cutting or
merging? In Proceedings of the ICCCN ’09, ICCCN ’09, pages 1–6,
Washington, DC, USA, 2009. IEEE Computer Society.

[10] A. Kennedy, X. Wang, Z. Liu, and B. Liu. Low power architecture for
high speed packet classification. In ANCS’08, pages 131–140, 2008.

[11] T. V. Lakshman and D. Stiliadis. High-speed policy-based packet for-
warding using efficient multi-dimensional range matching. SIGCOMM
Comput. Commun. Rev., 28:203–214, October 1998.

[12] H. Le and V. Prasanna. Scalable high throughput and power efficient ip-
lookup on fpga. In Field Programmable Custom Computing Machines,
2009. FCCM ’09. 17th IEEE Symposium on, pages 167 –174, april 2009.

[13] D. R. Morrison. Patriciapractical algorithm to retrieve information coded
in alphanumeric. J. ACM, 15:514–534, October 1968.

[14] A. Nikitakis and L. Papaefstathiou. A memory-efficient fpga-based
classification engine. Proceedings FCCM, 0:53–62, 2008.

[15] I. Papaefstathiou and V. Papaefstathiou. Memory-efficient 5d packet
classification at 40 gbps. In Proceedings INFOCOM, pages 1370 –1378,
May 2007.

[16] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet classification
using multidimensional cutting. In Proceedings of the 2003 conference
on Applications, technologies, architectures, and protocols for computer
communications, SIGCOMM ’03, pages 213–224, New York, NY, USA,
2003. ACM.

[17] H. Song and J. W. Lockwood. Efficient packet classification for
network intrusion detection using fpga. In Proceedings of the 2005
ACM/SIGDA 13th international symposium on Field-programmable gate
arrays, FPGA ’05, pages 238–245, New York, NY, USA, 2005. ACM.

[18] E. Spitznagel, D. Taylor, and J. Turner. Packet classification using ex-
tended tcams. In Proceedings of the 11th IEEE International Conference
on Network Protocols, ICNP ’03, pages 120–, Washington, DC, USA,
2003. IEEE Computer Society.

[19] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast and scalable
layer four switching. SIGCOMM Comput. Commun. Rev., 28:191–202,
October 1998.

[20] D. E. Taylor. Survey and taxonomy of packet classification techniques.
ACM Comput. Surv., 37:238–275, September 2005.

[21] D. E. Taylor and J. S. Turner. Classbench: a packet classification
benchmark. IEEE/ACM Trans. Netw., 15:499–511, June 2007.

[22] P. Tsuchiya. A search algorithm for table entries with non-contiguous
wildcarding. Unpublished report. Bellcore.

[23] J. van Lunteren and T. Engbersen. Fast and scalable packet classification.
Selected Areas in Communications, IEEE Journal on, 21(4):560 – 571,
may 2003.

1906

